Kliknij tutaj --> 🎲 matura czerwiec 2018 zad 11

w roku szkolnym 2017/2018 biologia poziom rozszerzony formuŁa od 2015 („nowa matura”) zasady oceniania rozwiĄzaŃ zadaŃ arkusz mbi-r1 czerwiec 2018 Zadanie 11. (0–1) Zadanie wykonaj na podstawie poniższego tekstu o ostańcach skalnych występujących na obszarze przedstawionym na barwnej mapie szczegółowej. Wśród geomorfologów istniały dwa poglądy na powstanie ostańców skalnych na Wyżynie Krakowsko-Częstochowskiej. Według pierwszego ostańce to mogoty powstae w warunkach ł Zadanie 18 (0-1) - matura poziom podstawowy czerwiec 2023, zadanie 18. 2023. Ciąg geometryczny (a n) jest określony dla każdej liczby naturalnej n≥1. W tym ciągu a 1 =3,75 oraz a 2 =−7,5. Dokończ zdanie. Zadanie 11.1. (0–2) Schemat punktowania 2 p. – za zastosowanie poprawnej metody, poprawne wykonanie obliczeń oraz podanie wyniku w procentach. 1 p. – zastosowanie poprawnej metody, ale: – popełnienie błędów rachunkowych prowadzących do błędnego wyniku liczbowego lub – niepodanie wyniku liczbowego w procentach. Egzamin zawodowy B.34 2018 czerwiec: styczeń 2018: Matura poziom rozszerzony: Matematyka – matura poziom rozszerzony. Język polski – matura poziom rozszerzony. Recherche De Site De Rencontre 100 Gratuit. Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura Czerwiec 2018 zadanie 26 Rozwiąż nierówność 2x(1−x)+1−xRozwiąż nierówność 2x(1−x)+1−xChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura Czerwiec 2018 zadanie 25 W pudełku znajdują się dwie kule: czarna i biała. Czterokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie trzy razy w czterech losowaniach wyciągniemy kulę koloru białego, jest równeNastępny wpis Matura Czerwiec 2018 zadanie 27 Wykresem funkcji kwadratowej f określonej wzorem f(x)=x2+bx+c jest parabola, na której leży punkt A=(0,−5). Osią symetrii tej paraboli jest prosta o równaniu x=7. Oblicz wartości współczynników b i c. Na odważkę stopu glinu z magnezem o masie 7,50 g podziałano nadmiarem rozcieńczonego kwasu solnego. Podczas roztwarzania stopu w kwasie solnym zachodziły reakcje zilustrowane równaniami: 2Al + 6HCl → 2AlCl3 + 3H2 Mg + 2HCl → MgCl2 + H2 W wyniku całkowitego roztworzenia stopu otrzymano klarowny roztwór, do którego dodano nadmiar wodnego roztworu wodorotlenku sodu. Zaszły reakcje opisane równaniami: AlCl3 + 6NaOH → Na 3[Al(OH)6] + 3NaCl MgCl2 + 2NaOH → Mg(OH)2 + 2NaCl Otrzymany nierozpuszczalny w wodzie związek odsączono, przemyto wodą, wysuszono i zważono. Jego masa (w przeliczeniu na czysty wodorotlenek magnezu) była równa 11,67 g. (0–2) Oblicz zawartość procentową glinu w stopie (w procentach masowych). (0–1) Klarowny roztwór uzyskany po odsączeniu osadu Mg(OH)2 nasycono tlenkiem węgla(IV). Zaobserwowano wytrącenie białego osadu wodorotlenku glinu. Napisz w formie jonowej skróconej równanie opisanej reakcji chemicznej. Rozwiązanie (0–2) Schemat punktowania 2 p. – za zastosowanie poprawnej metody, poprawne wykonanie obliczeń oraz podanie wyniku w procentach. 1 p. – zastosowanie poprawnej metody, ale: – popełnienie błędów rachunkowych prowadzących do błędnego wyniku liczbowego lub – niepodanie wyniku liczbowego w procentach. 0 p. – za zastosowanie błędnej metody obliczenia albo brak rozwiązania. Przykładowe rozwiązanie MMg(OH)2 = 58 g ∙ mol–1 nMg(OH)2 = 11,60 g58 g ∙ mol–1 = 0,2 mol ⇒ nMg(OH)2 = nMg = 0,2 mol mMg = 0,2 mol ∙ 24 g ∙ mol–1 = 4,8 g ⇒ mAl = 7,5 g – 4,8 g = 2,7 g % mas. Al = 2,7 g7,5 g ∙ 100% = 36(%) Uwaga: Należy zwrócić uwagę na zależność wartości wyniku końcowego od ewentualnych wcześniejszych zaokrągleń. (0–1) Schemat punktowania 1 p. – za poprawne napisanie równania reakcji w formie jonowej skróconej. 0 p. – za odpowiedź błędną albo brak odpowiedzi. Poprawna odpowiedź Al(OH)3–6 + 3CO2 →Al(OH)3 + 3HCO–3 lub 2Al(OH)3–6 + 3CO2 →2Al(OH)3 + 3CO2–3 + 3H2O Rozwiązaniem równania (x2−2x−3)⋅(x2−9)/x−1=0 nie jest liczba:Chcę dostęp do Akademii! Liczba log327log3√27 jest równa:Chcę dostęp do Akademii! Jedną z liczb spełniających nierówność (x−6)⋅(x−2)2⋅(x+4)⋅(x+10)>0 jest:Chcę dostęp do Akademii! Liczba dodatnia a jest zapisana w postaci ułamka zwykłego. Jeżeli licznik tego ułamka zmniejszymy o 50%, a jego mianownik zwiększymy o 50%, to otrzymamy liczbę b taką, że:Chcę dostęp do Akademii! Funkcja liniowa f jest określona wzorem f(x)=(a+1)x+11, gdzie a to pewna liczba rzeczywista, ma miejsce zerowe równe x=3/4. Stąd wynika, że:Chcę dostęp do Akademii! Funkcja f jest określona dla każdej liczby rzeczywistej x wzorem f(x)=(m√5−1)x+3. Ta funkcja jest rosnąca dla każdej liczby m spełniającej warunek:Chcę dostęp do Akademii! Układ równań {x−y=2 i x+my=1 ma nieskończenie wiele rozwiązań dla:Chcę dostęp do Akademii! Rysunek przedstawia wykres funkcji f zbudowany z 6 odcinków, przy czym punkty b=(2,−1) i C=(4,−1) należą do wykresu funkcji. Równanie f(x)=−1 ma:Chcę dostęp do Akademii! Dany jest rosnący ciąg arytmetyczny (an), określony dla liczb naturalnych n≥1, o wyrazach dodatnich. Jeśli a2+a9=a4+ak, to k jest równe:Chcę dostęp do Akademii! W ciągu (an) na określonym dla każdej liczby n≥1 jest spełniony warunek an+3=−2⋅3n+1. Wtedy:Chcę dostęp do Akademii! Dla każdej liczby rzeczywistej x wyrażenie (3x−2)2−(2x−3)(2x+3) jest po uproszczeniu równe:Chcę dostęp do Akademii! Kąt α∈(0°,180°) oraz wiadomo, że sinα⋅cosα=−3/8. Wartość wyrażenia (cosα−sinα)2+2 jest równa:Chcę dostęp do Akademii! Wartość wyrażenia 2sin218°+sin272°+cos218° jest równa:Chcę dostęp do Akademii! Punkty B, C i D leżą na okręgu o środku S i promieniu r. Punkt A jest punktem wspólnym prostych BC i SD, a odcinki i są równej długości. Miara kąta BCS jest równa 34° (zobacz rysunek). Wtedy:Chcę dostęp do Akademii! Pole trójkąta ABC o wierzchołkach A=(0,0), B=(4,2), C=(2,6) jest równe:Chcę dostęp do Akademii! Na okręgu o środku w punkcie O wybrano trzy punkty A, B, C tak, że |∢AOB|=70°, |∢OAC|=25°. Cięciwa AC przecina promień OB (zobacz rysunek). Wtedy miara ∢OBC jest równa:Chcę dostęp do Akademii! W układzie współrzędnych na płaszczyźnie dany jest odcinek AB o końcach w punktach A=(7,4), B=(11,12). Punkt S leży wewnątrz odcinka AB oraz |AS|=3⋅|BS|. Wówczas:Chcę dostęp do Akademii! Suma odległości punktu A=(−4,2) od prostych o równaniach x=4 i y=−4 jest równa:Chcę dostęp do Akademii! Suma długości wszystkich krawędzi sześcianu jest równa 96cm. Pole powierzchni całkowitej tego sześcianu jest równe:Chcę dostęp do Akademii! Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Kąt między ramionami tego trójkąta ma miarę 44°. Dwusieczna kąta poprowadzona z wierzchołka A przecina bok BC tego trójkąta w punkcie D. Kąt ADC ma miarę:Chcę dostęp do Akademii! Liczb naturalnych dwucyfrowych podzielnych przez 6 jest:Chcę dostęp do Akademii! Podstawą ostrosłupa jest kwadrat ABCD o boku długości 4. Krawędź boczna DS jest prostopadła do podstawy i ma długość 3 (zobacz rysunek). Pole ściany BCS tego ostrosłupa jest równe:Chcę dostęp do Akademii! Dany jest sześcian ABCDEFGH. Przekątne AC i BD ściany ABCD sześcianu przecinają się w punkcie P (zobacz rysunek). Tangens kąta, jaki odcinek PH tworzy z płaszczyzną ABCD, jest równy:Chcę dostęp do Akademii! Przekrojem osiowym walca jest kwadrat o przekątnej długości 12. Objętość tego walca jest zatem równa:Chcę dostęp do Akademii! Ze zbioru kolejnych liczb naturalnych {20,21,22,…,39,40} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby podzielnej przez 4 jest równe:Chcę dostęp do Akademii! Rozwiąż nierówność x(7x+2)>7x+ dostęp do Akademii! Wyznacz wszystkie liczby rzeczywiste x, które spełniają warunek: 3×2−8x−3/x−3=x− dostęp do Akademii! Dany jest trójkąt ABC. Punkt S jest środkiem boku AB tego trójkąta (zobacz rysunek). Wykaż, że odległości punktów A i B od prostej CS są dostęp do Akademii! Wykaż, że dla każdej liczby a>0 i dla każdej liczby b>0 prawdziwa jest nierówność 1/a+1/b≥4/a+ dostęp do Akademii! W ciągu geometrycznym przez Sn oznaczamy sumę n początkowych wyrazów tego ciągu, dla liczb naturalnych n≥1. Wiadomo, że dla pewnego ciągu geometrycznego: S1=2 i S2=12. Wyznacz iloraz i piąty wyraz tego dostęp do Akademii! Doświadczenie losowe polega na trzykrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy sumę oczek równą dostęp do Akademii! Podstawą ostrosłupa ABCDS jest prostokąt o polu równym 432, a stosunek długości boków tego prostokąta jest równy 3:4. Przekątne podstawy ABCD przecinają się w punkcie O. Odcinek SO jest wysokością ostrosłupa (zobacz rysunek). Kąt SAO ma miarę 60°. Oblicz objętość tego dostęp do Akademii! Liczby rzeczywiste x i z spełniają warunek 2x+z=1. Wyznacz takie wartości x i z, dla których wyrażenie x2+z2+7xz przyjmuje największą wartość. Podaj tę największą dostęp do Akademii! Dany jest trójkąt rozwartokątny ABC, w którym ∢ACB ma miarę 120°. Ponadto wiadomo, że |BC|=10 i |AB|=10√7 (zobacz rysunek). Oblicz długość trzeciego boku trójkąta dostęp do Akademii! Rozwiąż równanie (x^3+27)(x^2−16)= dostęp do Akademii! Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe 453–√. Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego dostęp do Akademii! W ciągu arytmetycznym (an), określonym dla liczb naturalnych n≥1, wyraz szósty jest liczbą dwa razy większą od wyrazu piątego, a suma dziesięciu początkowych wyrazów tego ciągu jest równa S10=154. Oblicz wyraz pierwszy oraz różnicę tego dostęp do Akademii! Dany jest ostrosłup prawidłowy czworokątny o wysokości H=16. Cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa jest równy 35. Oblicz pole powierzchni bocznej tego dostęp do Akademii! Rzucamy cztery razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 4) i liczbę uzyskanych reszek (również od 0 do 4). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych czterech rzutach liczba uzyskanych orłów będzie większa niż liczba uzyskanych dostęp do Akademii! Kąt α jest ostry i sinα+cosα=2–√. Oblicz wartość wyrażenia tgα+ dostęp do Akademii! Dany jest prostokąt ABCD. Na boku CD tego prostokąta wybrano taki punkt E, że |EC|=2|DE|, a na boku AB wybrano taki punkt F, że |BF|=|DE|. Niech P oznacza punkt przecięcia prostej EF z prostą BC (zobacz rysunek). Wykaż, że trójkąty AED i FPB są dostęp do Akademii! Wykaż, że reszta z dzielenia sumy kwadratów czterech kolejnych liczb naturalnych przez 8 jest równa dostęp do Akademii! Wykresem funkcji kwadratowej f określonej wzorem f(x)=x2+bx+c jest parabola, na której leży punkt A=(0,−5). Osią symetrii tej paraboli jest prosta o równaniu x=7. Oblicz wartości współczynników b i dostęp do Akademii! Rozwiąż nierówność 2x(1−x)+1−xChcę dostęp do Akademii! W pudełku znajdują się dwie kule: czarna i biała. Czterokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie trzy razy w czterech losowaniach wyciągniemy kulę koloru białego, jest równeChcę dostęp do Akademii! Liczba wszystkich dodatnich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry 0 i 2, jest równaChcę dostęp do Akademii! Gdy dodamy liczbę wszystkich krawędzi pewnego graniastosłupa do liczby wszystkich jego wierzchołków, to otrzymamy w wyniku 15. Liczba wszystkich krawędzi tego graniastosłupa jest równaChcę dostęp do Akademii! Wśród 100 osób przeprowadzono ankietę, w której zadano pytanie o liczbę książek przeczytanych w ostatnim roku. Wyniki ankiety zebrano w poniższej tabeli. Średnia liczba przeczytanych książek przez jedną ankietowaną osobę jest równaChcę dostęp do Akademii! Stożek o promieniu podstawy r i kula o tym samym promieniu mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równyChcę dostęp do Akademii! Dany jest walec, w którym wysokość jest równa promieniowi podstawy. Objętość tego walca jest równa 27π. Wynika stąd, że promień podstawy tego walca jest równyChcę dostęp do Akademii! Miary kątów pewnego czworokąta pozostają w stosunku 4:3:3:2. Wynika stąd, że najmniejszy kąt tego czworokąta ma miaręChcę dostęp do Akademii! Długości boków trapezu równoramiennego są równe 12,13,2,13. Wysokość h tego trapezu jest równaChcę dostęp do Akademii! Okrąg o środku S1=(2,1) i promieniu r oraz okrąg o środku S2=(5,5) i promieniu 4 są styczne zewnętrznie. WtedyChcę dostęp do Akademii! Odcinek AB jest średnicą okręgu o środku O i promieniu r. Na tym okręgu wybrano punkt C, taki, że |OB|=|BC| (zobacz rysunek). Pole trójkąta AOC jest równeChcę dostęp do Akademii! Liczba 1−tg40∘ jestChcę dostęp do Akademii! Dany jest ciąg arytmetyczny (an) określony wzorem an=16−12⋅n dla każdej liczby całkowitej n≥1. Różnica r tego ciągu jest równaChcę dostęp do Akademii! Wszystkie wyrazy ciągu geometrycznego (an) określonego dla n≥1 są dodatnie i 3a2=2a3. Stąd wynika, że iloraz q tego ciągu jest równyChcę dostęp do Akademii! Na jednym z rysunków przedstawiono fragment wykresu funkcji kwadratowej określonej wzorem f(x)=−(x−1)(3−x). Wskaż ten dostęp do Akademii! Funkcja liniowa f(x)=(1−m2)x+m−1 nie ma miejsc zerowych dlaChcę dostęp do Akademii! Największą wartością funkcji y=−(x−2)2+4 w przedziale ⟨3,5⟩ jestChcę dostęp do Akademii! Funkcja f jest określona wzorem f(x)=−2(x+2)−1(x−3)2 dla każdej liczby rzeczywistej x≠−2. Wartość funkcji f dla argumentu 2 jest równaChcę dostęp do Akademii! Liczba 820−2⋅420220⋅410 jest równaChcę dostęp do Akademii! Liczbę 2241111 można zapisać w postaci nieskończonego ułamka dziesiętnego okresowego. Dwudziestą cyfrą po przecinku jego rozwinięcia jestChcę dostęp do Akademii! Równanie x−12x+1=0Chcę dostęp do Akademii! Na rysunku przedstawiony jest przedział (−10,k⟩, gdzie k jest liczbą całkowitą. Suma wszystkich liczb całkowitych należących do tego przedziału jest równa 21. Stąd wynika, żeChcę dostęp do Akademii! Po dwukrotnej obniżce, za każdym razem o 10% w stosunku do ceny obowiązującej w chwili obniżki, komputer kosztuje 1944 złote. Stąd wynika, że przed tymi obniżkami ten komputer kosztowałChcę dostęp do Akademii! Wskaż liczbę spełniającą nierówność (4−x)(x+3)(x+4)> dostęp do Akademii! Dane są liczby: a=log128, b=log48, c=log412. Liczby te spełniają warunekChcę dostęp do Akademii! Dla x=22–√+1 oraz y=2–√−1 wartość wyrażenia x2−2xy+y2 jest równaChcę dostęp do Akademii! Okręgi o środkach odpowiednio $A$ i $B$ są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku $A$ jest równy 2. Uzasadnij, że promień okręgu o środku $B$ jest mniejszy od $\sqrt{2}-1$. Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej $x$ wzorem $f (x) = a^x$ (gdzie $a > 0$ i $a \neq1$), należy punkt $P = (2, 9)$. Oblicz $a$ i zapisz zbiór wartościfunkcji g, określonej wzorem $g (x) = f (x) − 2$ . Dwunasty wyraz ciągu arytmetycznego $\left(a_n\right)$, określonego dla $n\geqslant 1$, jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu. W układzie współrzędnych punkty A = (4,3) i B = (10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu $y = 2x + 3$. Oblicz współrzędne punktu $C$, dla któregokąt $ABC$ jest prosty. Dane są dwa zbiory: A ={100, 200, 300, 400, 500, 600, 700} i B ={10,11,12,13,14,15,16}. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego. Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe $45\sqrt{3}$ . Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa.

matura czerwiec 2018 zad 11